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Gauge Theory on a Discrete Noncommutative Space
Liangzhong Hu>? and Adonai S. Sant'/Anna
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In this paper, we apply Connes’ noncommutative geometry and the Seiberg—Witten map
to a discrete nhoncommutative space consisting odpies of a given noncommutative
spaceR™. The explicit action functional of gauge fields on this discrete noncommutative
space is obtained.
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1. INTRODUCTION

Field theories on noncommutative spaces are of great interest now because of
the recent development of the superstring theory. It was shown that in the presence
of a background Neveu-Schwarz B-field, the gauge theory living on D-branes
becomes noncommutative (Conretsal, 1998). On the basis of the existence of
the different regularization procedures in string theory, Seiberg and Witten (1999)
claimed that certain noncommutative gauge theories are equivalent to commutative
ones. In particular, they argued that there exists a map from a commutative gauge
field to a noncommutative one, which is compatible with the gauge structure of
each. This map has become known as the Seiberg—Witten map.

On the other hand, discrete spaces and corresponding physical theories have
been discussed extentively in the literature (see, for example, Boratel|i1987;
Feynman, 1982; Finkelstein, 1969; Minsky, 1982; Ruark, 1931; Snyder, 1947;
't Hooft, 1990; Yamamoto, 1984, 1985). In the framework of Connes’ noncom-
mutative geometry (Connes, 1985, 1994), finite spaces have been considered to
build models in particle physics (Chamsedditeal., 1993; Chamseddine and
Connes, 1996, 1997; Connes, 1990, 1996; Connes and Lott, 1990; Coquetreaux
al., 1991; Kastler, 1993, 1996; Varilly and Gracia-Bondia, 1993).

Differential calculus and gauge theories on finite sets or finite groups were
proposed in the literature (Dimakis anduMger-Hoissen, 1994a,b; Majid, 2000;
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Sitarz, 1992). Especially, the gauge theory on a finite point space was briefly
discussed by Cammarata and Coquereaux (1995). In the literature (Hu, 2000; Hu
and Sant’Anna, 2002), we give the explicit action functionals ¢f) gauge field

on a finite point set and copies of a connected manifold.

In this paper we first extend the results in the literature (Hu, 2000; Hu and
Sant’Anna, 2002) and formulate non-Abelian gauge theory on a finite point space
andn copies of a connected manifold. In these two cases, the action functionals
are obtained explicitly. We then construct noncommutative gauge theory on the
discrete noncommutative space consisting obpies of a given noncommutative
spaceR™. The explicit action functional in this case is also obtained.

2. NON-ABELIAN GAUGE THEORY ON n COPIES OF A MANIFOLD
2.1. Preliminaries: Differential Calculus onn-Point Set

We briefly review the differential calculus on a n-point set. More detailed ac-
countofthe construction can be foundin the literature (Cammarata and Coquereaux,
1995; Dimakis and Miler-Hoissen, 1994a,b; Hu and Sant’Anna, 2002).

Let M be a set of pointsiy, ..., iy (N < 00), and.A the algebra of complex
functions onM with (fg)(i) = f(i)g(i). Let p; € A defined by

pi(j) = &ij- (1)
It follows that

P*=p, PiPj =3P Zpizl, )
i

wherel(i) = 1. In other wordsp; is a projector ind. Eachf € A can be written
as

f:Zf(i)pi, 3)

wheref (i) € C, a complex number. The algehracan be extended to a universal
differential algebra(A) = &> ,Q" (A) (WhereQ°(A) = A) via the action of a
linear operator d ' (4) — Q' 1(A) satisfying

d1=0, d’2=0, d(we) = (dw)o + (—1) o, do’

wherew; € Q' (A). The space'’ (A) of r-forms areA-bimodules.l is taken to
be the unit in2(A). From the above properties, the set of projeciwrsatisfy the
following relations:

pidp; = —(dp)p; +d;dp, (4)
de =0. (5)
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Q(A) is an involutive algebra given by
(apday ...da,)* =da}...dajag (6)

whereay, ay, ..., a, € A. We havaw™ = w and wn)* = n*w* for w, n € Q(A).
If o € Q, then fa)* = —da*.

The universal first-order differential calcul@s' is generated by dp; (i #
i»i,j=1,2,...,n Notice thatp dp is alinear combination of; dp;(i # j).

Q* can be defined as the kernel in the algedr® A of the multiplication
map. The dimension a@! is, therefore, dimd ® A) — dim A = n(n — 1).

Similarly, the compositions a; dp; (i # j),i, j =1, 2,..., n, generate the
higher-order universal differential calculus dv. For example, the universal
second-order differential calculu®? is generated byp; dp;pjdpc(i # j, ] #
k),i,j,k=1,2,...,n.

SinceQP = Q' @4 ... ®4 Q! (p terms), therefore the dimension @P is
nP(n — 1)P/nP~1 = n(n — 1)P.

Let& = A™be afreed-module. A connection ofi is a linear mapv : £ —
€ ®4 QY(A) such that

V(¥a) = V(¥)a+ ¥ ®da, @

forallw e &£, ae A

Any connection orf is of the formV = d + A with A* = —A. A is called
a connection 1-form. We can regakdas an element dfl,(A) @ 4 Q1(A). Here
Mm(A) is am x mmatrix algebra over. A can be written ad = - ; Ajj pidp;
with Aj; € Mp(C), am x m complex matrix, and\;; = 0, am x m zero matrix.
EspeciallyA* = — > ; Aj; pidp;. FromA* = —A, we have

Ajj = Aiji. (8

Let G C End4(€) = Mn(A) be a gauge group &f. ThenG = ), G; pi with

Gj C Mn(C). Notice thatG; = G, = ... = G,. There is a natural action & on
the space of connections given by

V =UVU ¥ UvU ), (9)

with & € £ andU € G. The connection 1-formA satisfies
A'=UAU™ +Udu™.
HereU =), Uip € G, andU; € G;.
To make the formulae concise, one introduces
=) &;pdp
i

=) _(L+A)pdp, (10)
)
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with ®; = 1. Herelis them x midentity matrix. One then has

& =UdU,

P =U;dU; (12)
The curvature o¥ is defined by® = V2. It follows that

O =dA + A2 (12)

® transforms in the usual wa®’ = UOUL. From dA)* = —dA* = dA and
(A?)* = A?, one ha®* = ©.
As a Matrix valued 2-form@ can be written as

e = Z@ijkpi dp; p; dpc,

ik
Oik = ®jPjx — Pi. (13)

2.2. From Fredholm Module to Action Functional on M

One ofthe basicideas in Connes’ noncommutative differential geometry is the
Fredholm module (Connes, 1994, and references therein). Applying the Fredholm
module to the universal algebfa(A) discussed in the previous subsection, we
can obtain an explicit action functional of non-Abelian gauge fields on the finite
setM.

Without loss of generality, the Fredholm moduld, (<, D) for the non-
Abelian case is the same as the one in the Abelian case (Hu, 2000; Hu and
Sant’Anna, 2002). Herdl is the algebra oM defined in the previous sectioH.
is taken to be a-dimensional linear space over the complex field C, 1£is just
the direct sunt{ = @]_;H;, Hi = C. The action of4 onH is given by

fl) 0 ... O
() 0 f@2 ... O©
0o 0 .. f(n)

with f € A. D is a Hermitiam x n matrix with D; = [_)ji , andDj; is a linear map-
ping from7; to H;. The following equality defines an involutive representation
of Q(A) in H,

w(da) = [D, w(a)], (14)
wherea € A. To ensure the differentia satisfies

d? =0, (15)
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one has to impose the following condition &y
D? = 42, (16)

where u is a real constant and is then x n identity matrix. Notice that the
diagonal elements dd commute exactly with the action od. For the sake of
convenience, we can ignore the diagonal elemeni3,dfe.,

Dii = 0. (17)
The projectom; can be expressed asiax n matrix,

(7w (Pi1))ap = i pi- (18)

From (14) and (18), it follows that
(m(pidpj))as = aids; Dij, (19)
(m(pidpj Pjdp))ep = Jaidpk Dijj Dik- (20)

Denote

Djj®jj = Hjj, (21)

where®; is defined in (10). From the definition &, we can find that{; is a
m x m complex matrix withHjj = Hji. This means thatl = (Hj) = =(®) is a
n x n Hermitian matrix with its elements x m submatrices. We have

Hi = 0. (22)

H is called the connection matrix ad. From (11) and (21), the transformation
rule ofH; reads

Hij = Ui Hju;
From (13), (16), and (20)—(22), one has
7(©) = H? — 12, (23)

wherel is themn x mnidentity matrix.
The transformation rule of (®j) satisfies

7(®f) = Uim (©;)U; ™.

(@) is called the curvature matrix dv.
One can define an inner prodygtin = (2(A)) by setting

(a|B) = Tr(a™p).
Then the action functional of the curvatu®eis
S= [|7(®)II” = (7(®)|n(©)) = Tr(x(©)> (24)
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It follows that

S=TrH* — 2u2TrH? + mmu*. (25)

Example. We taken = 2 andG; = G, = U(1).
S = 2|Ho|* — 4u?|Hpl? + 21*
= 2p*(| Az + 1% — 1)%

This is the Connes’ version of Higgs potential.

2.3. Action Functional of Non-Abelian Gauge Fields
on n Copies of A Manifold

Suppose that each element of a finite setis a manifold, then this finite set forms
a disconnected manifold. L¥tbe an oriented and connected smooth manifold and
M, as the previous sectionsngpoint set. We see thAt x M is a disconnected
manifold consisting oh copies ofV.

Let h be a complex function ol x M,

h= Z h(i)pi. (26)

Hereh(i) is a complex function oW;, theith copy ofV. The algebra o x M
is C*(V) ® A with A the algebra oM.

Denote the differential oM by ds, i.e., the differentiatl in Subsections 2
and 3 is replaced by;. Let ds be the usual differential oW, andd the total
differential onV x M. It follows that

d = ds +dy. (27)
The nilpotency ofl requires that
dsdf = —dy0s. (28)
Differentiating (26), we have
dh= Z(dsh(i ) pi + Z h(i)ds pi.
i i
A connection 1-formA onV x M can be written as
AZZAi pi—i-ZAijpidfpj, (29)
i i

A obeys the usual transformation rule,

A’ =UAU ' +Uudu.
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HereU =3 Uipi € G C Myu(C*(V) ® A), Ui € Gj, andG,; is the gauge group
onV,. Let G be the gauge group o, thenG =G, =--- = G.

A has a usual differential degree and a finite-difference degre®) @dding
up to 1:

A(l'o) = Z Aipi. (30)
i
Itis the continuous part &. A; is a Lie algebravalued 1-form af andA’® = —A;.

ACY =% "A;pids ;. (31)
i

It is the connection 1-form oM, and is well studied in the previous subsection.
The curvature oA is given by

O =dA + A%

It can be seen tha@ transforms in the usual wa@)’ = UGUL. As a 2-form,©®
can be written as

0= Z(dSAI +Ai AA; )pl + Z(dsq)u + A ‘I)u ‘I’ijAj)pidf Pj
i

+ Z Oi pids p; Pjds P, (32)
i,j.k
Ok = PjjPjk — Pix. (33)
Applying the Fredholm module to the above formula, we have
7(05) = Fidj + dsHj + AiHjj — HyAj + (H2 — ;L2|)ij. (34)

HereF; is the curvature of;, F; = d;Ai + Aj A AL
We see that (®) has a usual differential degree and a finite-difference degree
(o, B) adding up to 2. Let us begin with the termsir{®) of bidegree (2, 0):

@i(jz'o) = Fidj, (35)
ie, 0% =F;, and®{*” = 0(i # j).
(9(2 % obeys the transformatlon rule,
029 _ y ef o)U 1

©@9 s the continuous part of the field strength.
Next, we look at the compone@™? of bidegree (1, 1):

OV = diHjj + AiHj — HjA,. (36)
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One can find tha®'" transforms as the following:
1,1 1,1) -1
oY =uyefu;t.

©@Y corresponds to the interaction betwaémnd M.
We can define a covariant derivativetdf as

D, Hj = d,Hjj + Aj Hjj — HijAj,.. (37)

Therefore@i(jl’l) = D, H;dx*. From now on, the Einstein sum convention for the
indicesu andv is adopted.
Finally, we have the compone&®? of degree (0, 2):

002 =nH2_ 2, (38)
with
0*? = y,ef2u;t.

©©2 corresponds to the field strength on the finiteldet
We then obtain the action functional 8 x M:

S:/Edv
v

The Lagrangian density is given by the following formulae:

L=2Ly+ L1+ Lo, (39)
1 w
Lo=—3 iZTr(Fi,wFf ), (40)

L1 = Tr[(D,H)(D*H)] = ZTr[(DMHij)(D“Hij)*]
i
= > Tr[(@Hi + AiuHy — HyAp) (0" H; + AfH — HAT) ] (41)
i
Lo = TrH* — 2u®TrH? + mnu®. (42)
ThetermC,isthe usualterm describingthe Lagrangef@Ga G x --- x G

(nterms) connectiord; (i # j,i, j =1, 2,...,n)in £1 give a mass to the gauge
fieldsA; andA;.

Example. We takeG = U (1). The Lagrangian density &f (1) gauge fields on
V x M is given by the following formulae (Hu, 2000; Hu and Sant’Anna, 2002):

L =L+ L1+ Lo, (43)
1 v
Lo = -3 Z Fi FY, (44)
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WhereFW = 8;4Aiu — 8UAW.
L1 =Tr[(D,H)D"H)*] =) [(D,. Hy)(D*Hy)*]
i

= Z[(aﬂ + A — AR HI[ (9% + A — A H;, (45)
¥
Lo = TrH* — 2u2TrH? + nu®.

=2 (Zq“e a‘:q“) ¢ bt — —,u <Z¢| ) + . (46)

i, ],k o
HereH = (H;) is an x n matrix.¢;i(i = 1,...,n— 1) is a real parameter field.

3. GAUGE THEORY ON n COPIES
OF NONCOMMUTATIVE SPACER "

3.1. Moyal Star Product

We consider a noncommutative Eucleadian spa®ewith coordinatest’
characterized by the algebra

%, %] =i6", (47)

whered! is an antisymmetric constant tensor with = —6¥'. Field theories in

such a space can be realized as a deformation of the usual field theory in an
ordinary (commutative) space by changing the product of two fields to the Moyal
star product (Mayal, 1949) defined by

d
19900 = exp( 505155 ) F0)aly-anx. (48)
Note that the first term on the right side gives the ordinary product. Also the
commutator (47) is realized as

X, 1], =x «x) —xl «x' =i6l. (49)

3.2. Seiberg—Witten Map

Let A; be a noncommutative gauge fields on a noncommutative Euclidean
spaceR™, whose coordinates obex'[ x/], = i6". DenoteA; the counterpart
of A;, the ordinary gauge field on the ordinary Euclidean spae The map
betweerA; andA;, called the Seiberg-Witten map (Seiberg and Witten, 1999), is
characterized by the differential equation with respeét, to

N 1 . - N ~ N N N
SA (9) = —ZSQIK[AJ * (8kAi + Fki) + (8|<Ai + Fki) * Aj], (50)
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with the initial condition,
A6 =0)=A;, (51)
Herex is the Moyal star product. The field strengftrp is defined as
Fi = aiA; — 0jAi — 1A x A +iA; %A, (52)
The differential Eq. (50) is known as the Seiberg-Witten equation.

3.3. Gauge Theory om Copies of Noncommutative Space R

Naively, to get a physical quantity on a noncommutative space, we simply
take this quantity on the corresponding commutative space and replace all products
by thex products.

Let R™ be a noncommutative Euclidean space and Kt@oint set. Then
R™ x M is a discrete noncommutative space consisting obpies ofR™. Now
we construct noncommutative gauge theonfRfhx M.

A noncommutative connection 1-forfonR™ x M can be written as

A=>"Ap+> Ajpdip;, (53)
i i
A has a differential degree(S) adding up to 1:
A0 — ZA, Pi. (54)
i
ACY =" Ajpidip;. (55)

0]
The curvature oA is given by
© =dA +AxA.
© can be written as
O =) (dAi + A+ AA) P + D (ds®i + Aj + B — & xAj)pidip
i 0

+ Zéijkpidf p; p;ds P, (56)
i,j,k

éijk = éij * (ijk — ‘i’iko (57)
Applying the Fredholm module to the above formula, we have
ﬂ(é)ij) = |Ei8ij —i—dsl:hj +Ai * Hj — |:||J *AJ‘ + (|:| *H — /,L2|)ij. (58)

HereF; is the curvature oA\, Fi = dsA; + A; * AA,.
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We see that((f)) has a differential degree () adding up to 2. Let us begin
with the term inr (®) of bidegree (2, 0):

5(2,0)

ie, 07" =F,and®"” = of # ).
Next, we look at the componeé)(l’l) of bidegree (1,1):

~ 1‘1 ~ ~ ~ ~ ~
®|(] )ZdSHij—l—Ai*Hij—Hij*Aj. (60)

A(L.1)

® """ corresponds to the interaction betwd€handM.

We can define a covariant derivativetdf as
Dﬂ*l:lij =3/4|:|ij+Aiu*|:|ij —ﬂij*AjM- (61)
Therefore(:)i(-l’l) =D, % I:hj * dx*. Here the Einstein sum convention for the in-
dicesu andv is adopted.
Finally, we have the compone@(o’z) of degree (0, 2):

O? — A - 2, (62)
The Lagrangian density is given by the following formulae:
2 = 22 + 21 + 20, (63)
N 1 . .
Lo=-3 ZTr(FW * FIY), (64)

L1=Tr[(D, # H) % (D" + )] = Y TH(D,, * Hy) (O  Hy)']
i
= ZTI‘[(aﬂl:hj +Ai,¢ * |:|ij - |:|ij *Aju)
i
* (B‘Lﬂji + AT * |:|ji - |:|ji * Aft)]a (65)
ﬁozTrH*H*ﬂ*ﬂ—2M2Trl:|*l:|+mm4. (66)

Example. The Lagrangian density of the noncommutatiV€l) gauge fields on
noncommutativdlR™ x M is given by the following formulae:

£, = —%ZF}W v BL (67)
L1 =Tr(D, * H) % (D" x H)] = > "[(D,, * Hy) + (D" % Hy)*]
i
— Z[(a# + A — A = Hl = (0" + A — A« Hy (68)
ij
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H — 2uTrH * H + nu®.

* Hx H %
_ ( )&i*@wk*@.

- = (Z éi *¢.) +nu, (69)

Since the Moyal star product of two fields differs from the ordinary one only by a
total divergence, the quadratic tegins ¢; in (69) can be replaced k.
We now consider the simpliest case, i.e.,

)
<)
|
I)

A = A, i=1,2,...,n (70)

Here A is aU (1) gauge field on noncommutati®". The physical meaning of
the above asumptions is: there exists unique noncommutative gauge field, i.e., the
noncommutative Maxwell electromagnetic field over all copieR8f

Inthis special case, the Lagrangian density is given by the following formulae:

1 - ~
Lo = —Zn(F,w * F*), (71)

n 2 na
L1=—— iZ(mi) x ("), (72)

andZo is the same as the formula (69). Notice that the te&m() * (3%¢;) in (72)
can be replaced b;a,(qs.)(a%.) and the Lagrangian densifyycorresponds to the
Landau—Ginsburg model in the noncommutafR/2 (see for example, Aref'eva
et al, 2000; Gubser and Sondhi, 2001).
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