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Gauge Theory on a Discrete Noncommutative Space
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In this paper, we apply Connes’ noncommutative geometry and the Seiberg–Witten map
to a discrete noncommutative space consisting ofn copies of a given noncommutative
spaceRm. The explicit action functional of gauge fields on this discrete noncommutative
space is obtained.
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1. INTRODUCTION

Field theories on noncommutative spaces are of great interest now because of
the recent development of the superstring theory. It was shown that in the presence
of a background Neveu–Schwarz B-field, the gauge theory living on D-branes
becomes noncommutative (Conneset al., 1998). On the basis of the existence of
the different regularization procedures in string theory, Seiberg and Witten (1999)
claimed that certain noncommutative gauge theories are equivalent to commutative
ones. In particular, they argued that there exists a map from a commutative gauge
field to a noncommutative one, which is compatible with the gauge structure of
each. This map has become known as the Seiberg–Witten map.

On the other hand, discrete spaces and corresponding physical theories have
been discussed extentively in the literature (see, for example, Bombelliet al., 1987;
Feynman, 1982; Finkelstein, 1969; Minsky, 1982; Ruark, 1931; Snyder, 1947;
’t Hooft, 1990; Yamamoto, 1984, 1985). In the framework of Connes’ noncom-
mutative geometry (Connes, 1985, 1994), finite spaces have been considered to
build models in particle physics (Chamseddineet al., 1993; Chamseddine and
Connes, 1996, 1997; Connes, 1990, 1996; Connes and Lott, 1990; Coquereauxet
al., 1991; Kastler, 1993, 1996; Varilly and Gracia-Bondia, 1993).

Differential calculus and gauge theories on finite sets or finite groups were
proposed in the literature (Dimakis and M¨uller-Hoissen, 1994a,b; Majid, 2000;
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Sitarz, 1992). Especially, the gauge theory on a finite point space was briefly
discussed by Cammarata and Coquereaux (1995). In the literature (Hu, 2000; Hu
and Sant’Anna, 2002), we give the explicit action functionals ofU (1) gauge field
on a finite point set andn copies of a connected manifold.

In this paper we first extend the results in the literature (Hu, 2000; Hu and
Sant’Anna, 2002) and formulate non-Abelian gauge theory on a finite point space
andn copies of a connected manifold. In these two cases, the action functionals
are obtained explicitly. We then construct noncommutative gauge theory on the
discrete noncommutative space consisting ofn copies of a given noncommutative
spaceRm. The explicit action functional in this case is also obtained.

2. NON-ABELIAN GAUGE THEORY ON n COPIES OF A MANIFOLD

2.1. Preliminaries: Differential Calculus onn-Point Set

We briefly review the differential calculus on a n-point set. More detailed ac-
count of the construction can be found in the literature (Cammarata and Coquereaux,
1995; Dimakis and M¨uller-Hoissen, 1994a,b; Hu and Sant’Anna, 2002).

Let M be a set ofn pointsi1, . . . , i n (n < ∞), andA the algebra of complex
functions onM with ( f g)(i ) = f (i )g(i ). Let pi ∈ A defined by

pi ( j ) = δi j . (1)

It follows that

p∗ = p, pi pj = δi j pj ,
∑

i

pi = 1, (2)

where1(i ) = 1. In other words,pi is a projector inA. Each f ∈ A can be written
as

f =
∑

i

f (i )pi , (3)

where f (i ) ∈ C, a complex number. The algebraA can be extended to a universal
differential algebraÄ(A) = ⊕∞r=0Ä

r (A) (whereÄ0(A) = A) via the action of a
linear operator d :Är (A)→ Är+1(A) satisfying

d1= 0, d2 = 0, d(ωrω
′) = (dωr )ω

′ + (−1)rωr dω′,

whereωr ∈ Är (A). The spacesÄr (A) of r -forms areA-bimodules.1 is taken to
be the unit inÄ(A). From the above properties, the set of projectorspi satisfy the
following relations:

pi dpj = −(dpi )pj + δi j dpi , (4)∑
i

dpi = 0. (5)
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Ä(A) is an involutive algebra given by

(a0da1 . . .dan)∗ = da∗n . . .da∗1a∗0 (6)

wherea0, a1, . . . , an ∈ A. We haveω∗∗ = ω and (ωη)∗ = η∗ω∗ for ω, η ∈ Ä(A).
If α ∈ Ä1, then (dα)∗ = −dα∗.

The universal first-order differential calculusÄ1 is generated bypi dpj (i 6=
j ), i , j = 1, 2,. . . , n. Notice thatpi dpi is a linear combination ofpi dpj (i 6= j ).

Ä1 can be defined as the kernel in the algebraA⊗A of the multiplication
map. The dimension ofÄ1 is, therefore, dim(A⊗A)− dimA = n(n− 1).

Similarly, the compositions ofpi dpj (i 6= j ), i , j = 1, 2,. . . , n, generate the
higher-order universal differential calculus onM . For example, the universal
second-order differential calculusÄ2 is generated bypi dpj pj dpk(i 6= j , j 6=
k), i , j , k = 1, 2,. . . , n.

SinceÄp = Ä1⊗A . . .⊗A Ä1 (p terms), therefore the dimension ofÄp is
np(n− 1)p/np−1 = n(n− 1)p.

LetE = Am be a freeA-module. A connection onE is a linear map∇ : E →
E ⊗A Ä1(A) such that

∇(9a) = ∇(9)a+9 ⊗ da, (7)

for all 9 ∈ E , a ∈ A.
Any connection onE is of the form∇ = d + A with A∗ = −A. A is called

a connection 1-form. We can regardA as an element ofMm(A)⊗A Ä1(A). Here
Mm(A) is am×m matrix algebra overA. A can be written asA =∑i , j A i j pi dpj

with A i j ∈ Mm(C), am×m complex matrix, andA i i = 0, am×m zero matrix.
Especially,A∗ = −∑i , j A∗j i pi dpj . FromA∗ = −A, we have

A∗i j = A j i . (8)

Let G ⊂ EndA(E) = Mm(A) be a gauge group ofE . ThenG =∑i Gi pi with
Gi ⊂ Mm(C). Notice thatG1 = G2 = . . . = Gn. There is a natural action ofG on
the space of connections given by

∇′ = U∇U−1 : 9 7→ U∇(U−19), (9)

with 9 ∈ E andU ∈ G. The connection 1-formA satisfies

A′ = UAU−1+ UdU−1.

HereU =∑i Ui pi ∈ G, andUi ∈ Gi .
To make the formulae concise, one introduces

Φ =
∑
i , j

Φij pi dpj

=
∑
i , j

(1+ A ij )pi dpi , (10)



P1: FLT

International Journal of Theoretical Physics [ijtp] pp885-ijtp-467265 June 20, 2003 21:24 Style file version May 30th, 2002

638 Hu and Sant’Anna

with Φii = 1. Here1 is them×m identity matrix. One then has

Φ′ = UΦU−1,

Φ′ij = Ui Φij U−1
j . (11)

The curvature of∇ is defined byΘ = ∇2. It follows that

Θ = dA + A2. (12)

Θ transforms in the usual way,Θ′ = UΘU−1. From (dA)∗ = −dA∗ = dA and
(A2)∗ = A2, one hasΘ∗ = Θ.

As a Matrix valued 2-form,Θ can be written as

Θ =
∑
i , j ,k

Θi jk pi dpj pj dpk,

Θijk = ΦijΦjk −Φik. (13)

2.2. From Fredholm Module to Action Functional on M

One of the basic ideas in Connes’ noncommutative differential geometry is the
Fredholm module (Connes, 1994, and references therein). Applying the Fredholm
module to the universal algebraÄ(A) discussed in the previous subsection, we
can obtain an explicit action functional of non-Abelian gauge fields on the finite
setM .

Without loss of generality, the Fredholm module (A,H,D) for the non-
Abelian case is the same as the one in the Abelian case (Hu, 2000; Hu and
Sant’Anna, 2002). HereA is the algebra onM defined in the previous section.H
is taken to be an-dimensional linear space over the complex field C, i.e.,H is just
the direct sumH = ⊕n

i=1Hi ,Hi = C. The action ofA onH is given by

π ( f ) =


f (1) 0 . . . 0

0 f (2) . . . 0

. . . . . . . . . . . .

0 0 . . . f (n)


with f ∈ A. D is a Hermitiann× n matrix with Dij = D̄ji , andDij is a linear map-
ping fromH j toHi . The following equality defines an involutive representation
of Ä(A) inH,

π (da) = [D, π (a)], (14)

wherea ∈ A. To ensure the differentiald satisfies

d2 = 0, (15)
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one has to impose the following condition onD,

D2 = µ2I , (16)

whereµ is a real constant andI is the n× n identity matrix. Notice that the
diagonal elements ofD commute exactly with the action ofA. For the sake of
convenience, we can ignore the diagonal elements ofD, i. e.,

Dii = 0. (17)

The projectorpi can be expressed as an× n matrix,

(π (pi ))αβ = δαi δβi . (18)

From (14) and (18), it follows that

(π (pi dpj ))αβ = δαi δβ j Dij , (19)

(π (pi dpj pj dpk))αβ = δαi δβk Dij Djk. (20)

Denote

DijΦij = H ij , (21)

whereΦij is defined in (10). From the definition ofD, we can find thatH ij is a
m×m complex matrix withH∗ij = H ji . This means thatH = (H ij ) = π (Φ) is a
n× n Hermitian matrix with its elementsm×m submatrices. We have

H ii = 0. (22)

H is called the connection matrix onM . From (11) and (21), the transformation
rule ofH ij reads

H′ij = Ui H ij U−1
j .

From (13), (16), and (20)–(22), one has

π (Θ) = H2− µ2I , (23)

whereI is themn×mn identity matrix.
The transformation rule ofπ (Θij ) satisfies

π (Θ′ij ) = Uiπ (Θij )U−1
j .

π (Θ) is called the curvature matrix onM .
One can define an inner product〈|〉 in π (Ä(A)) by setting

〈α|β〉 = Tr(α∗β).

Then the action functional of the curvatureΘ is

S= ‖π (Θ)‖2 = 〈π (Θ)|π (Θ)〉 = Tr(π (Θ)2. (24)



P1: FLT

International Journal of Theoretical Physics [ijtp] pp885-ijtp-467265 June 20, 2003 21:24 Style file version May 30th, 2002

640 Hu and Sant’Anna

It follows that

S= TrH4− 2µ2TrH2+mnµ4. (25)

Example. We taken = 2 andG1 = G2 = U (1).

S= 2|H12|4− 4µ2|H12|2+ 2µ4

= 2µ4(|A12+ 1|2− 1)2.

This is the Connes’ version of Higgs potential.

2.3. Action Functional of Non-Abelian Gauge Fields
on n Copies of A Manifold

Suppose that each element of a finite set is a manifold, then this finite set forms
a disconnected manifold. LetV be an oriented and connected smooth manifold and
M , as the previous sections, an-point set. We see thatV × M is a disconnected
manifold consisting ofn copies ofV .

Let h be a complex function onV × M ,

h =
∑

i

h(i )pi . (26)

Hereh(i ) is a complex function onVi , thei th copy ofV . The algebra onV × M
is C∞(V)⊗A with A the algebra onM .

Denote the differential onM by df , i.e., the differentiald in Subsections 2
and 3 is replaced bydf . Let ds be the usual differential onV , andd the total
differential onV × M . It follows that

d = ds + df . (27)

The nilpotency ofd requires that

dsdf = −df ds. (28)

Differentiating (26), we have

dh=
∑

i

(dsh(i ))pi +
∑

i

h(i )df pi .

A connection 1-formA on V × M can be written as

A =
∑

i

A i pi +
∑
i , j

A ij pi d f pj , (29)

A obeys the usual transformation rule,

A′ = UAU−1+ UdU−1.
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HereU =∑i Ui pi ∈ G ⊂ Mm(C∞(V)⊗A), Ui ∈ Gi , andGi is the gauge group
on Vi . Let G be the gauge group onV , thenG = G1 = · · · = Gn.

A has a usual differential degree and a finite-difference degree (α, β) adding
up to 1:

A(1,0)=
∑

i

A i pi . (30)

It is the continuous part ofA.A i is a Lie algebra valued 1-form onVi andA∗i = −A i .

A(0,1)=
∑
i , j

A ij pi d f pj . (31)

It is the connection 1-form onM , and is well studied in the previous subsection.
The curvature ofA is given by

Θ = dA + A2.

It can be seen thatΘ transforms in the usual way,Θ′ = UΘU−1. As a 2-form,Θ
can be written as

Θ =
∑

i

(dsA i + A i ∧ A i )pi +
∑
i , j

(dsΦij + A i Φij −Φij A j )pi df pj

+
∑
i , j ,k

Θijk pi d f pj pj d f pk, (32)

Θijk = ΦijΦjk −Φik. (33)

Applying the Fredholm module to the above formula, we have

π (Θij ) = Fi δij + dsH ij + A i H ij − H ij A j + (H2− µ2I )ij . (34)

HereFi is the curvature ofA i , Fi = dsA i + A i ∧ Ai .
We see thatπ (Θ) has a usual differential degree and a finite-difference degree

(α, β) adding up to 2. Let us begin with the term inπ (Θ) of bidegree (2, 0):

Θ(2,0)
ij = Fi δij , (35)

i.e.,Θ(2,0)
ii = Fi , andΘ(2,0)

ij = 0(i 6= j ).

Θ(2,0)
ii obeys the transformation rule,

Θ′(2,0)
ii = Ui Θ

(2,0)
ii U−1

i .

Θ(2,0) is the continuous part of the field strength.
Next, we look at the componentΘ(1,1) of bidegree (1, 1):

Θ(1,1)
ij = dsH ij + A i H ij − H ij A j . (36)
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One can find thatΘ(1,1)
ij transforms as the following:

Θ′(1,1)
ij = Ui Θ

(1,1)
ij U−1

j .

Θ(1,1) corresponds to the interaction betweenV andM .
We can define a covariant derivative ofH ij as

DµH ij = ∂µH ij + A iµH ij − H ij A jµ. (37)

ThereforeΘ(1,1)
ij = DµH ij dxµ. From now on, the Einstein sum convention for the

indicesµ andν is adopted.
Finally, we have the componentΘ(0,2) of degree (0, 2):

Θ(0,2)= H2− µ2I , (38)

with

Θ′(0,2)
ij = Ui Θ

(0,2)
ij U−1

j .

Θ(0,2) corresponds to the field strength on the finite setM .
We then obtain the action functional onV × M :

S=
∫

V
Ldν

The Lagrangian density is given by the following formulae:

L = L2+ L1+ L0, (39)

L2 = −1

2

∑
i

Tr(FiµνF
µν

i ), (40)

L1 = Tr[(DµH)(DµH)∗] =
∑
i , j

Tr[(DµH ij )(D
µH ij )

∗]

=
∑
i , j

Tr
[
(∂µH ij + A iµH ij − H ij A jµ)

(
∂µH ji + Aµ

j H ji − H ji A
µ

i

)]
(41)

L0 = TrH4− 2µ2TrH2+mnµ4. (42)

The termL2 is the usual term describing the Lagrange for aG× G× · · · × G
(n terms) connection.H ij (i 6= j , i , j = 1, 2,. . . , n) in L1 give a mass to the gauge
fieldsA i andA j .

Example. We takeG = U (1). The Lagrangian density ofU (1) gauge fields on
V × M is given by the following formulae (Hu, 2000; Hu and Sant’Anna, 2002):

L = L2+ L1+ L0, (43)

L2 = −1

4

∑
i

FiµνFµν

i , (44)



P1: FLT

International Journal of Theoretical Physics [ijtp] pp885-ijtp-467265 June 20, 2003 21:24 Style file version May 30th, 2002

Gauge Theory on a Discrete Noncommutative Space 643

whereFiµν = ∂µAi ν − ∂νAiµ.

L1 = Tr
[
(DµH )(DµH )∗

] =∑
i , j

[
(DµHij )(D

µHij )
∗]

=
∑
i , j

[(∂µ + Aiµ − Ajµ)Hij ]
[(
∂µ + Aµj − Aµi

)
Hji
]
, (45)

L0 = TrH4− 2µ2TrH2+ nµ4.

=
∑

i , j ,k,l

(∑
α

eαi eαj e
α
k eαl

)
φiφ jφkφl − 2n

n− 1
µ2

(∑
i

φ2
i

)
+ nµ4. (46)

HereH = (Hij ) is an× n matrix.φi (i = 1, . . . , n− 1) is a real parameter field.

3. GAUGE THEORY ON n COPIES
OF NONCOMMUTATIVE SPACE R n

3.1. Moyal Star Product

We consider a noncommutative Eucleadian spaceRm with coordinateŝxi

characterized by the algebra

[ x̂i , x̂ j ] = i θ ij , (47)

whereθ ij is an antisymmetric constant tensor withθ ij = −θ ji . Field theories in
such a space can be realized as a deformation of the usual field theory in an
ordinary (commutative) space by changing the product of two fields to the Moyal
star product (Mayal, 1949) defined by

f (x) ∗ g(x) = exp

(
i

2
θkl ∂

∂yk

∂

∂zl

)
f (y)g(z)|y=z=x. (48)

Note that the first term on the right side gives the ordinary product. Also the
commutator (47) is realized as

[xi , x j ]∗ ≡ xi ∗ x j − x j ∗ xi = i θ ij . (49)

3.2. Seiberg–Witten Map

Let Â i be a noncommutative gauge fields on a noncommutative Euclidean
spaceRm, whose coordinates obey [xi , x j ]∗ = i θ ij . DenoteA i the counterpart
of Â i , the ordinary gauge field on the ordinary Euclidean spaceRm. The map
betweenA i andÂ i , called the Seiberg-Witten map (Seiberg and Witten, 1999), is
characterized by the differential equation with respect toθ ,

δÂ i (θ ) = −1

4
δθ jk[Â j ∗ (∂kÂ i + F̂ki)+ (∂kÂ i + F̂ki) ∗ Â j ], (50)
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with the initial condition,

Âi (θ = 0)= A i , (51)

Here∗ is the Moyal star product. The field strengthF̂ij is defined as

F̂ij = ∂i Â j − ∂ j Â i − i Â i ∗ Â j + i Â j ∗ Â i . (52)

The differential Eq. (50) is known as the Seiberg-Witten equation.

3.3. Gauge Theory onn Copies of Noncommutative Space Rm

Naively, to get a physical quantity on a noncommutative space, we simply
take this quantity on the corresponding commutative space and replace all products
by the∗ products.

Let Rm be a noncommutative Euclidean space and M an-point set. Then
Rm × M is a discrete noncommutative space consisting ofn copies ofRm. Now
we construct noncommutative gauge theory onRm × M .

A noncommutative connection 1-form̂A onRm × M can be written as

Â =
∑

i

Â i pi +
∑
i , j

Â ij pi d f pj , (53)

Â has a differential degree (α, β) adding up to 1:

Â(1,0) =
∑

i

Â i pi . (54)

Â(0,1) =
∑
i , j

Â ij pi d f pj . (55)

The curvature of̂A is given by

Θ̂ = dÂ + Â ∗ Â.

Θ can be written as

Θ̂ =
∑

i

(dsÂ i + Â i ∗ ∧Â i )pi +
∑
i , j

(dsΦ̂ij + Â i ∗Φij − Φ̂ij ∗ Â j )pi df pj

+
∑
i , j ,k

Θ̂ijk pi d f pj pj d f pk, (56)

Θ̂ijk = Φ̂ij ∗ Φ̂jk − Φ̂ik. (57)

Applying the Fredholm module to the above formula, we have

π (Θ̂ij ) = F̂i δij + dsĤ ij + Â i ∗ H ij − Ĥij ∗ Â j + (Ĥ ∗ Ĥ − µ2I )ij . (58)

HereF̂i is the curvature of̂A i , F̂i = dsÂ i + Â i ∗ ∧Âi .
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We see thatπ (Θ̂) has a differential degree (α, β) adding up to 2. Let us begin
with the term inπ (Θ̂) of bidegree (2, 0):

Θ̂
(2,0)
ij = F̂i δij , (59)

i.e.,Θ̂
(2,0)
ii = F̂i , andΘ̂

(2,0)
ij = 0(i 6= j ).

Next, we look at the component̂Θ
(1,1)

of bidegree (1,1):

Θ̂
(1,1)
ij = dsĤ ij + Â i ∗ Ĥ ij − Ĥ ij ∗ Â j . (60)

Θ̂
(1,1)

corresponds to the interaction betweenRm andM .
We can define a covariant derivative ofĤ ij as

Dµ ∗ Ĥ ij = ∂µĤ ij + Â iµ ∗ Ĥ ij − Ĥ ij ∗ Â jµ. (61)

ThereforeΘ̂
(1,1)
ij = Dµ ∗ Ĥ ij ∗ dxµ. Here the Einstein sum convention for the in-

dicesµ andν is adopted.

Finally, we have the componentΘ̂
(0,2)

of degree (0, 2):

Θ̂
(0,2)= Ĥ ∗ Ĥ − µ2I , (62)

The Lagrangian density is given by the following formulae:

L̂ = L̂2+ L̂1+ L̂0, (63)

L̂2 = −1

2

∑
i

Tr
(
F̂iµν ∗ F̂µνi

)
, (64)

L̂1 = Tr[(Dµ ∗ Ĥ) ∗ (Dµ ∗ Ĥ)∗] =
∑
i , j

Tr[(Dµ ∗ Ĥ ij ) ∗ (Dµ ∗ Ĥ ij )
∗]

=
∑
i , j

Tr[(∂µĤ ij + Â iµ ∗ Ĥ ij − Ĥ ij ∗ Â jµ)

∗ (∂µĤ ji + Âµ

j ∗ Ĥ ji − Ĥ ji ∗ Âµ

i )], (65)

L̂0 = TrĤ ∗ Ĥ ∗ Ĥ ∗ Ĥ − 2µ2TrĤ ∗ Ĥ +mnµ4. (66)

Example. The Lagrangian density of the noncommutativeU (1) gauge fields on
noncommutativeRm × M is given by the following formulae:

L̂2 = −1

4

∑
i

F̂ iµν ∗ F̂µν

i , (67)

L̂1 = Tr[(Dµ ∗ Ĥ ) ∗ (Dµ ∗ Ĥ )∗] =
∑
i , j

[(Dµ ∗ Ĥ ij ) ∗ (Dµ ∗ Ĥ ij )
∗]

=
∑

i j

[(∂µ + Âiµ − Â jµ) ∗ Ĥ ij ] ∗ [(∂µ + Âµj − Âµi ) ∗ Ĥ ji ], (68)
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L̂0 = TrĤ ∗ Ĥ ∗ Ĥ ∗ Ĥ − 2µ2TrĤ ∗ Ĥ + nµ4.

=
∑

i , j ,k,l

(∑
α

eαi eαj e
α
k eαl

)
φ̂i ∗ φ̂ j ∗ φ̂k ∗ φ̂l

− 2n

n− 1
µ2

(∑
i

φ̂i ∗ φ̂i

)
+ nµ4. (69)

Since the Moyal star product of two fields differs from the ordinary one only by a
total divergence, the quadratic term̂φi ∗ φ̂i in (69) can be replaced bŷφ2

i .
We now consider the simpliest case, i.e.,

Âi = Â, i = 1, 2,. . . , n. (70)

Here Â is aU (1) gauge field on noncommutativeRm. The physical meaning of
the above asumptions is: there exists unique noncommutative gauge field, i.e., the
noncommutative Maxwell electromagnetic field over all copies ofRm.

In this special case, the Lagrangian density is given by the following formulae:

L̂2 = −1

4
n(F̂µν ∗ F̂µν), (71)

L̂1 = n

n− 1

∑
i

(∂µφ̂i ) ∗ (∂µφ̂i ), (72)

andL̂0 is the same as the formula (69). Notice that the term (∂µφ̂i ) ∗ (∂µφ̂i ) in (72)
can be replaced by (∂µφ̂i )(∂µφ̂i ) and the Lagrangian densitŷL corresponds to the
Landau–Ginsburg model in the noncommutativeRm (see for example, Aref’eva
et al., 2000; Gubser and Sondhi, 2001).
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